viernes, 29 de mayo de 2015

Segmentacion


Dominio de colisión
Un dominio de colisión es un segmento físico de una red de computadores donde es posible que las tramas puedan "colisionar" (interferir) con otros. Estas colisiones se dan particularmente en el protocolo de red Ethernet.
A medida que aumenta el número de nodos que pueden transmitir en un segmento de red, aumentan las posibilidades de que dos de ellos transmitan a la vez. Esta transmisión simultánea ocasiona una interferencia entre las señales de ambos nodos, que se conoce como colisión. Conforme aumenta el número de colisiones disminuye el rendimiento de la red.
El rendimiento de una red puede ser expresado como  Rendimiento (%) = \left(1 - \frac{Colisiones}{Paquetes\;Totales} \right)* 100
Un dominio de colisión puede estar constituido por un solo segmento de cable Ethernet en una Ethernet de medio compartido, o todos los nodos que afluyen a un concentrador Ethernet en una Ethernet de par trenzado, o incluso todos los nodos que afluyen a una red de concentradores y repetidores.

Dispositivos con dominios de colisión

A partir de las capas del modelo OSI es posible determinar qué dispositivos extienden o componen los dominios de colisión.
  • Los dispositivos de la capa 1 OSI (como los concentradores y repetidores) reenvían todos los datos transmitidos en el medio y por lo tanto extienden los dominios de colisión.
  • Los dispositivos de la capa 2 y 3 OSI (como los conmutadores) segmentan los dominios de colisión.
  • Los dispositivos de la capa 3 OSI (como los routers) segmentan los dominios de colisión y difusión (broadcast).
Con Ethernet, si se tienen más de cuatro concentradores en una red, entonces probablemente ya se ha extendido el dominio de colisión más de lo deseado.
Dominio broadcast 

Un dominio de difusión  es el área lógica en una red de computadoras en la que cualquier computadora conectado a la red puede transmitir directamente a cualquier otra computadora en el dominio sin precisar ningún dispositivo de encaminamiento, dado que comparten la misma subred, dirección de puerta de enlace y están en la misma red de área local (LAN) virtual o VLAN (predeterminada o instalada).
Es un área de una red de computadoras, formada por todos las computadoras y dispositivos de red que se pueden alcanzar enviando una trama a ladirección de difusión de la capa de enlace de datos.
Un dominio de difusión funciona con la última dirección IP de una subred.
Se utilizan encaminadores o enrutadores (routers) para segmentar los dominios de difusión.
Con otra expliacacion:
El dominio de difusión es el conjunto de todos los dispositivos que reciben tramas de broadcast que se originan en cualquier dispositivo del conjunto. Los conjuntos debroadcast generalmente están limitados por enrutadores, dado que los routers no envían tramas de broadcast.

     
                                                              Spanning tree
En comunicacionesSTP  es un protocolo de red de nivel 2 del modelo OSI (capa de enlace de datos). Su función es la de gestionar la presencia de bucles en topologías de red debido a la existencia de enlaces redundantes (necesarios en muchos casos para garantizar la disponibilidad de las conexiones). El protocolo permite a los dispositivos de interconexión activar o desactivar automáticamente los enlaces de conexión, de forma que se garantice la eliminación de bucles. STP es transparente a las estaciones de usuario.

Función

El algoritmo transforma una red física con forma de malla, en la que existen bucles, por una red lógica en forma de árbol (libre de bucles). Los puentes se comunican mediante mensajes de configuración llamados Bridge Protocol Data Units (BPDU).
El protocolo establece identificadores por puente y elige el que tiene la prioridad más alta (el número más bajo de prioridad numérica), como el puente raíz (Root Bridge). Este puente raíz establecerá el camino de menor coste para todas las redes; cada puerto tiene un parámetro configurable: el Span path cost. Después, entre todos los puentes que conectan un segmento de red, se elige un puente designado, el de menor coste (en el caso que haya el mismo coste en dos puentes, se elige el que tenga el menor identificador "dirección MAC"), para transmitir las tramas hacia la raíz.






























miércoles, 27 de mayo de 2015

Metodos Switching

Store and forward
Es una técnica de conmutación en redes con conexiones punto a punto estáticas, en virtud de la cual los datos se envían a un nodo intermedio, donde son retenidos temporalmente hasta su posterior reenvío, bien a su destino final, bien a otro nodo intermedio. Cada nodo intermedio se encarga de verificar laintegridad del mensaje antes de transferirlo al siguiente nodo.
Esta técnica se aplicó como tecnología de conmutación en las primeras redes de área amplia (WAN), y más tarde en los primeros multicomputadores (con redes estáticas). En general, es adecuada para redes tolerantes al retardo (DTN, de delay-tolerant networks), donde no se proporciona ningún tipo de servicio en tiempo real, concretamente en escenarios donde los nodos se hallan geográficamente distantes, no existe conectividad directa o la red sufre una elevada tasa de errores.

Funcionamiento:

La unidad de transferencia entre interfaces (nivel de red del modelo OSI) es el paquete, mientras que la unidad de transferencia entre controladores de enlace (nivel físico) es elphit (de physical unit). Un phit es la unidad de información transferida por un enlace en un ciclo de red.
En una red basada en almacenamiento y reenvío, un conmutador espera a recibir íntegramente el paquete antes de ejecutar el algoritmo de encaminamiento. Una vez hecho esto, el paquete completo se transfiere o reenvía al siguiente conmutador, determinado por el encaminamiento, a través de la salida correspondiente. En cada instante, el paquete puede estar transfiriéndose por un único canal. De lo anterior se deduce que los recursos de red (buffer y enlaces) se asignan a nivel de paquete.1
El buffer del conmutador debe tener capacidad para almacenar todo el paquete completo. En una red de procesamiento paralelo, el recurso a la memoria principal del nodo al que se conecta el conmutador no es una opción viable, ya que degrada considerablemente las prestaciones. Por ello, es preciso limitar ante todo el tamaño de los paquetes, dividiendo en la interfaz origen el mensaje en unidades más pequeñas que no superen un tamaño máximo preestablecido. En multiprocesadores esta división puede ser superflua, ya que la longitud del mensaje suele estar ajustada al tamaño de una línea de caché.

Conmutación virtual cut-through


La conmutación cut-through (Cut-through switching) ––más conocida como virtual cut-through–– es una técnica de conmutación de paquetes según la cual elconmutador empieza a retransmitir una trama o paquete antes de haberlo recibido por completo, normalmente al identificar la dirección del nodo destino.
Si los conmutadores de la red implementan conmutación adaptativa , pueden alternar selectivamente entre un modo de operación cut-through y otro de tipostore-and-forward("almacenamiento y reenvío"), dependiendo de las condiciones que presente la red en cada momento. Este mecanismo permite optimizar las prestaciones de la red al combinar la alta velocidad de transferencia de virtual cut-through (cuando la tasa de errores es baja) con la fiabilidad que proporciona store-and-forward (cuando la tasa de errores aumenta).


Funcionamiento

Al igual que en conmutación vermiforme, en una red que opera con virtual cut-through el encaminamiento en el conmutador se ejecuta en cuanto llega la cabecera del paquete. La unidad de transferencia entre interfaces (nivel de red del modelo OSI) es el paquete, que puede "cortarse" (cut-through) en trozos más pequeños, de forma que la cabecera pueda estar ya en el siguiente conmutador cuando aún no se ha recibido el paquete completo.
Si un paquete se bloquea por hallarse ocupado un enlace, puede entretanto almacenarse en el buffer a la entrada del conmutador, cuya capacidad debe ser suficiente para alojar (al menos) un paquete completo. Esto implica que si los mensajes no tienen un tamaño máximo preestablecido, deberán fragmentarse en unidades más pequeñas. De esta forma, en virtual cut-through el camino a recorrer por los paquetes se segmenta en etapas, al igual que sucede en conmutación vermiforme, pero asignando buffer y enlaces a nivel de paquete como en almacenamiento y reenvío. Este esquema permite que, en cada momento, un paquete no bloqueado pueda estar transfiriéndose por múltiples canales de la red al mismo tiempo.
Fragment Free
Método de conmutación que permite al switch analizar los primeros 64 bytes de una trama. Esto lo realiza para evitar el envío de tramas demasiado cortas (fragmentos). Actualmente opción por defecto.

Este es el sistema por defecto en los switches 1900, pero el 2950 no soporta este sistema, aunque éste retransmite muchos mas rápido que el 1900.
Este método e s la mejora del Cut forward, con la única diferencia de que no lee únicamente los 14 bytes de la cabecera, sino que lee los primeros 64(mínimo tamaño para un frame Ethernet).
De  esta manera reduce los frames erróneos de menos de 64 bytes.

Igualmente, este método puede retransmitir frames con CRC erróneo. Es por eso, que algunos fabricantes tienen métodos dinámicos, que saltan de método según los errores que hayan. Si hay muchos errores, se escoge el sistema Store Forward. Si los errores descienden, se vuelve al método Fragment free

El punto medio entre cut-through y store-and-forward, es el método fragment free cut-through el cuál sólo envía paquetes cuyo largo mínimo es de 64 bytes, y filtra aquellos paquetes cuya longitud es menor que 64 bytes, tales como paquetes corruptos o runt. La diferencia entre éste método y store-and-forward es que de todas formas puede enviar paquetes corruptos aún cuando ellos sean mayores que 64 bytes.


-Principio de operación:
1.- Se almacenan los primeros 64 bytes de la trama.
2.- Se checa que no hayan errores de formato.
3.- Se verifica la tabla de direcciones MAC (Look up Table).
4.- Basado en el punto 3, el Switch envía el frame a su destino.

-Ventajas

La mayoría de los errores ocurren en los primeros 64 bytes
Filtra los Runts y colisiones tardías.
Menor latencia que el método Store&Forward

-Desventajas
Mayor latencia que el método Cut-Through
(Latencia = 64 bytes+ tiempo de procesamiento).
Reenvía tramas con errores de CRC.














miércoles, 20 de mayo de 2015

Diferencias entre ROUTER,SWITCH,HUB

Switch

El switch es un aparato muy semejante al hub, pero tiene una gran diferencia: los datos provenientes de la computadora de origen solamente son enviados al la computadora de destino. Esto se debe a que los switchs crean una especie de canal de comunicación exclusiva entre el origen y el destino. De esta forma, la red no queda "limitada" a una única computadora en el envío de información . Esto aumenta la performance de la red ya que la comunicación está siempre disponible, excepto cuando dos o más computadoras intentan enviar datos simultáneamente a la misma máquina. Esta característica también disminuye los errores (colisiones de paquetes de datos, por ejemplo). Así como en el hub, un switch tiene varios puertos y la cantidad varía de la misma forma. 


Hub 
El hub es un dispositivo que tiene la función de interconectar las computadoras de una red local. Su funcionamiento es más simple comparado con el switch y el router: el hub recibe datos procedentes de una computadora y los transmite a las demás. En el momento en que esto ocurre, ninguna otra conmutadora puede enviar una señal. Su liberación surge después que la señal anterior haya sido completamente distribuida. 
Routers 
El router es un dispositivo utilizado en redes de mayor porte. Es más " inteligente" que el switch, pues, además de cumplir la misma función, también tiene la capacidad de escoger la mejor ruta que un determinado paquete de datos debe seguir para llegar a su destino. Es como si la red fuera una ciudad grande y el router elige el camino más corto y menos congestionado. De ahí el nombre de router

Conclusión



El switch (Conmutador) es un aparato que te permite conectar varios equipos en una red Ethernet con el mismo ancho de banda para todos (Esto es relativo). 

Un hub (Concentrador) permite conectar varios equipos en una red Ethernet pero dividiendo el ancho de banda. Realmente ya no los venden. 

Un router (ruteador) es un aparato que permite la comunicación entre dos redes. Generalmente, tu red local e Internet, si estas en tu casa o una pequeña empresa.
















viernes, 15 de mayo de 2015

Dispositivos de red

Concentrador (hub
Es el dispositivo que permite centralizar el cableado de una red de computadoras, para luego poder ampliarla.
Trabaja en la capa física (capa 1) del modelo OSI o la capa de acceso al medio en el modelo TCP/IP. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos (repetidor).
En la actualidad, la tarea de los concentradores la realizan, con frecuencia, los conmutadores (switches).



Información técnica

Una red Ethernet se comporta como un medio compartido, es decir, sólo un dispositivo puede transmitir con éxito a la vez, y cada uno es responsable de la detección de colisiones y de la retransmisión. Con enlaces 10Base-T y 100Base-T (que generalmente representan la mayoría o la totalidad de los puertos en un concentrador) hay parejas separadas para transmitir y recibir, pero que se utilizan en modo half duplex el cual se comporta todavía como un medio de enlaces compartidos (véase 10Base-T para las especificaciones de los pines).
Un concentrador, o repetidor, es un dispositivo de emisión bastante sencillo. Los concentradores no logran dirigir el tráfico que llega a través de ellos, y cualquier paquete de entrada es transmitido a otro puerto (que no sea el puerto de entrada). Dado que cada paquete está siendo enviado a través de cualquier otro puerto, aparecen las colisiones de paquetes como resultado, que impiden en gran medida la fluidez del tráfico. Cuando dos dispositivos intentan comunicar simultáneamente, ocurrirá una colisión entre los paquetes transmitidos, que los dispositivos transmisores detectan. Al detectar esta colisión, los dispositivos dejan de transmitir y hacen una pausa antes de volver a enviar los paquetes.

Usos

Históricamente, la razón principal para la compra de concentradores en lugar de los conmutadores era el precio. Esto ha sido eliminado en gran parte por las reducciones en el precio de los conmutadores, pero los concentradores aún pueden ser de utilidad en circunstancias especiales:
  • Un analizador de protocolo conectado a un conmutador no siempre recibe todos los paquetes, ya que desde que el conmutador separa a los puertos en los diferentes segmentos. En cambio, la conexión del analizador de protocolos con un concentrador permite ver todo el tráfico en el segmento. Por otra parte, los conmutadores caros pueden ser configurados para permitir a un puerto escuchar el tráfico de otro puerto (lo que se denomina puerto de duplicado); sin embargo, esto supone un gasto mucho más elevado que si se emplean concentradores.
  • Algunos grupos de computadoras o clúster, requieren cada uno de los miembros del equipo para recibir todo el tráfico que trata de ir a la agrupación. Un concentrador hará esto, naturalmente; usar un conmutador en estos casos, requiere la aplicación de trucos especiales.
  • Cuando un conmutador es accesible para los usuarios finales para hacer las conexiones, por ejemplo, en una sala de conferencias, un usuario inexperto puede reducir la red mediante la conexión de dos puertos juntos, provocando un bucle. Esto puede evitarse usando un concentrador, donde un bucle se romperá en el concentrador para los otros usuarios (también puede ser impedida por la compra de conmutadores que pueden detectar y hacer frente a los bucles, por ejemplo mediante la aplicación de Spanning Tree Protocol).
  • Un concentrador barato con un puerto 10-Base-2 es probablemente la manera más fácil y barata para conectar dispositivos que sólo soportan 10-Base-2 a una red moderna (no suelen venir con los puertos 10-Base-2 conmutadores baratos).
Conmutador (switch)
Es el dispositivo digital lógico de interconexión de equipos que opera en la capa de enlace de datos del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red y eliminando la conexión una vez finalizada ésta.1
Los conmutadores se utilizan cuando se desea conectar múltiples tramos de una red, fusionándolos en una sola red. Al igual que los puentes, dado que funcionan como un filtro en la red y solo retransmiten la información hacia los tramos en los que hay el destinatario de la trama de red, mejoran el rendimiento y la seguridad de las redes de área local (LAN).
Un conmutador en el centro de una red de estrella:

Router

Un router —anglicismo; también conocido como enrutador1 o encaminador2 de paquetes, y españolizado como rúter3 es un dispositivo que proporciona conectividad a nivel de red o nivel tres en el modelo OSI. Su función principal consiste en enviar o encaminar paquetes de datos de una red a otra, es decir, interconectar subredes, entendiendo por subred un conjunto de máquinas IP que se pueden comunicar sin la intervención de un encaminador (mediante puentes de red), y que por tanto tienen prefijos de red distintos.
Los encaminadores en el modelo OSI:

Access point

Un punto de acceso inalámbrico (WAP o AP por sus siglas en inglés: Wireless Access Point) enredes de computadoras es un dispositivo que interconecta dispositivos de comunicación inalámbrica para formar una red inalámbrica. Normalmente un WAP también puede conectarse a una red cableada, y puede transmitir datos entre los dispositivos conectados a la red cable y los dispositivos inalámbricos. Muchos WAPs pueden conectarse entre sí para formar una red aún mayor, permitiendo realizar "roaming". (Por otro lado, una red donde los dispositivos cliente se administran a sí mismos - sin la necesidad de un punto de acceso - se convierten en una red ad-hoc[1]). Los puntos de acceso inalámbricos tienen direcciones IP asignadas, para poder ser configurados.
Son los encargados de crear la red, están siempre a la espera de nuevos clientes a los que dar servicios. El punto de acceso recibe la información, la almacena y la transmite entre la WLAN(Wireless LAN) y la LAN cableada.
Un único punto de acceso puede soportar un pequeño grupo de usuarios y puede funcionar en un rango de al menos treinta metros y hasta varios cientos. Este o su antena son normalmente colocados en alto pero podría colocarse en cualquier lugar en que se obtenga la cobertura de radio deseada.
El usuario final accede a la red WLAN a través de adaptadores. Estos proporcionan una interfaz entre el sistema de operación de red del cliente (NOS: Network Operating System) y las ondas, mediante una antena inalambrica.